If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+4b-17=0
a = 1; b = 4; c = -17;
Δ = b2-4ac
Δ = 42-4·1·(-17)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{21}}{2*1}=\frac{-4-2\sqrt{21}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{21}}{2*1}=\frac{-4+2\sqrt{21}}{2} $
| 12/w=15/20 | | 5n=511•53. | | 50=-16t^2+64t+2 | | 13.5=3h | | 120=b⋅20 | | 18=-16t^2+40t+2 | | 10(4p–2)+4=–18p–16 | | -16/3+6/5(6+x)=2/3(x+2) | | 3+(6-3m)^1/2=3 | | 3+(6-3m)=0 | | 26=-16t^2+56t+2 | | 3x+2x+25=45 | | 24.8+x=30 | | 9x-56=79 | | 5x+17=51 | | 7a−6−5a=−8 | | 4x+10+5x-17=180 | | 7x+21=-2 | | 150°+3x+x+45=180° | | 4n+18−6n=34 | | 3.14x=196 | | 10y=+7 | | b^2+4b-41=0 | | 1/3(x-12)=1/6(x-6) | | 6x−2x=5 | | 3a=24* | | v=46010-46010(20)(27) | | 9=3+z | | 32=(2L+2)+2w | | 5{m-3}+1=21 | | v=46010-46010(27)(1) | | 3x2.4-5=16 |